Enantioselective synthesis of 1 -substituted tetrahydro- β-carboline derivatives via the asymmetric transfer hydrogenation

Piotr Roszkowski ${ }^{\text {a }}$, Krystyna Wojtasiewicz ${ }^{\text {a }}$, Andrzej Leniewski ${ }^{\text {a }}$, Jan K. Maurin ${ }^{\text {b, }}$ c, Tadeusz Lis ${ }^{\text {d }}$, Zbigniew Czarnocki ${ }^{\text {a, * }}$
${ }^{\text {a }}$ Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
${ }^{\text {b }}$ Drug Institute, Chetmska 30/34, 00-750 Warsaw, Poland
${ }^{\text {c }}$ Institute of Atomic Energy, 05-400 Otwock-Swierk, Poland
${ }^{\text {d }}$ Faculty of Chemistry, Wroctaw University, F. Joliot-Curie 14, 50-383 Wroctaw, Poland

Received 8 December 2004; received in revised form 31 January 2005; accepted 31 January 2005

Abstract

Several 1-substituted-3,4-dihydro- β-carboline derivatives were subjected to asymmetric transfer hydrogenation catalysed by chiral ruthenium complexes to give both enantiomers of 1,2,3,4-tetrahydro- β-carbolines of high optical purity and in good yields. The absolute stereochemistry of $4 \mathbf{c}$ was established on the basis of X-ray analysis of its Mosher amide. © 2005 Elsevier B.V. All rights reserved.

Keywords: Enantioselective reduction; Tryptamine derivatives; Alkaloids; Chirality transfer

1. Introduction

Compounds that possess the tetrahydro- β-carboline skeleton form a class of tryptamine derivatives, which have been studied extensively [1,2]. This skeleton is a common structural feature of numerous secondary metabolites, including Vinca-, Rauvolfia-, and Harman-type alkaloids. Many of these bases have a tremendous value to pharmacology and are attractive synthetic targets to both academic and industrial research groups. Recently, it was shown that several tetrahydro- β-carbolines have the ability to bind with high affinity to serotonin receptors in the central nervous system. This is probably responsible for their observed neuroactivity [3]. Interestingly, some other tetrahydro- β-carbolines formed in vivo from tryptamine and various carbonyl compounds disclosed a significant neurotoxic activity by promoting neuronal death comparable with the most potent endogenous toxins [4].

[^0]On the other hand, the derivatives of biologically important amines (e.g. catecholamines) and long-chain fatty acids have gained considerable interest in recent years as a new family of lipids [5].

Recently, we have developed a general method for the construction of a novel class of fatty acids-derived tetrahydroisoquinolines [6]. During our collaboration with biochemical investigators [7] the need arose for the synthesis of an analogous series of tetrahydro- β-carbolines, possibly in a stereoselective way. In this respect, the Bischler-Napieralski-based methodology appeared quite attractive since it provided the prochiral environment for enantioselective reductions of the imine moiety.

2. Experimental

The NMR spectra were recorded on a Varian Unity Plus spectrometer operating at 500 MHz for ${ }^{1} \mathrm{H} \mathrm{NMR}$ and at 125 MHz for ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} and are given as δ values (in ppm) relative

Fig. 1. Atom numbering for spectral data listing.
to TMS. Mass spectra were collected on AMD 604 apparatus. Optical rotation was measured on a Perkin-Elmer 247 MC polarimeter. TLC analyses were performed on silica gel plates (Merck Kiesegel GF_{254}) and visualized using UV light or iodine vapour. Column chromatography was carried out at atmospheric pressure using Silica Gel 60 (230-400 mesh, Merck) using mixtures of chloroform/methanol as eluents. Melting points were determined on a Boetius hot-plate microscope and were uncorrected. All solvents used in the reactions were anhydrous.

Fig. 1 shows the numbering convention for presentation of the NMR data in the experimental part.

The single crystal X-ray measurements were done on a KUMA KM4 CCD κ-axis diffractometer. After initial corrections and data reduction intensities of reflections were used to solve and consecutively refine structures. The direct methods from SHELXS-97 [8] and procedures from SHELXL-97 [9] served for these purposes.

2.1. Synthesis of tryptamides

2.1.1. N-[2-(indol-3-yl)ethyl]acetamide (3a)

To a stirred suspension of tryptamine $\mathbf{1}(3.0 \mathrm{~g}, 18.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ a solution of acetic anhydride $\mathbf{2 a}$ ($3.0 \mathrm{~mL}, 3.18 \mathrm{mmol}$) and triethylamine ($5.2 \mathrm{~mL}, 37.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise. After 10 min stirring at room temperature the reaction mixture was treated with saturated aqueous NaHCO_{3} solution, organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried with MgSO_{4}, and concentrated under reduced pressure. Purification by column chromatography using $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(95: 5)$ afforded compound $3 \mathbf{a}$ as a colourless solid ($3.7 \mathrm{~g}, 98 \%$), mp $78-79^{\circ} \mathrm{C}$ (Ref. [10] mp 76-77 ${ }^{\circ} \mathrm{C}$). The spectroscopic data were in agreement with those reported in the literature [11].

2.1.2. N-[2-(indol-3-yl)ethyl]butyramide (3b)

Tryptamine $1(3.0 \mathrm{~g}, 18.7 \mathrm{mmol})$ and butyric acid $\mathbf{2 b}$ $(5.17 \mathrm{~mL}, 56.2 \mathrm{mmol})$ in xylene $(60 \mathrm{~mL})$ were heated at reflux using a Dean-Stark apparatus for 4 h . The resulting mixture was cooled to room temperature, basified with 10% aqueous NaOH solution and extracted with CHCl_{3}. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was chromatographed on a silica gel column with $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}$ (95:5) to give 3b ($4.0 \mathrm{~g}, 93 \%$) as light beige solid, mp
$84-86^{\circ} \mathrm{C}$ (Ref. [12] mp $85-86^{\circ} \mathrm{C}$). The spectroscopic data were in agreement with those reported in the literature [12].

2.1.3. N-[2-(indol-3-yl)ethyl]nonanamide (3c)

This compound was synthesised according to the procedure described for amide 3b. Amide 3c ($4.9 \mathrm{~g}, 87 \%$) was obtained as a light beige solid, $\mathrm{mp} 95-97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 8.18$ (s, 1H-N1'), 7.61 (d, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-6^{\prime}\right), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}-3^{\prime}\right), 7.21\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-5^{\prime}\right), 7.123(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-$ $\left.4^{\prime}\right), 7.02\left(\mathrm{~d}, ~ J=2.0 \mathrm{~Hz}, 1 \mathrm{H}-2^{\prime}\right), 5.54(\mathrm{~s}, 1 \mathrm{H}-\mathrm{NH}), 3.60$ (q, $\left.J=6.0 \mathrm{~Hz}, 2 \mathrm{H}-1^{\prime \prime}\right), 2.97\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}-2^{\prime \prime}\right), 2.09(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}-2), 1.57(\mathrm{~m}, 2 \mathrm{H}-3), 1.25(\mathrm{~m}, 10 \mathrm{H}-4,5,6,7,8)$, 0.87 (t, $J=7.0,3 \mathrm{H}-9) .{ }^{13} \mathrm{C}$ NMR: $\delta 173.21,136.43,127.36$, $122.19,122.04,119.46,118.73,113.03,111.29,39.67,36.93$, 31.83, 29.32, 29.31, 29.15, 25.76, 25.38, 22.65, 14.11.LRMS (ESI): $m / z=323.3[\mathrm{M}+\mathrm{Na}]^{+}$.

2.1.4. N-[2-(indol-3-yl)ethyl]octadecanoylamide (3d)

This compound was synthesised according to the procedure described for amide 3b. Amide 3d ($6.8 \mathrm{~g}, 85 \%$) was obtained as a colourless solid, mp 111-113 ${ }^{\circ} \mathrm{C}$ (Ref. [13] mp $103^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR: $\delta 8.26\left(\mathrm{~s}, 1 \mathrm{H}-\mathrm{N} 1{ }^{\prime}\right), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-$ $\left.6^{\prime}\right), 7.38\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-3^{\prime}\right), 7.21\left(\mathrm{~m}, 1 \mathrm{H}-5^{\prime}\right), 7.12(\mathrm{t}$, $\left.1 \mathrm{H}-4^{\prime}\right), 7.03\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}-2^{\prime}\right), 5.51(\mathrm{~s}, 1 \mathrm{H}-\mathrm{NH}), 3.61$ (q, $\left.J=6.0 \mathrm{~Hz}, 2 \mathrm{H}-1^{\prime \prime}\right), 2.97\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}-2^{\prime \prime}\right), 2.09(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}-2), 1.57(\mathrm{~m}, 2 \mathrm{H}-3), 1.25(\mathrm{~m}, 28 \mathrm{H}-4-17), 0.88$ (t, J=7.0, 3H-18). ${ }^{13} \mathrm{C}$ NMR: δ 173.18, 136.42, 127.37, $122.18,122.01,119.49,118.75,113.10,111.27,39.65,36.94$, 31.94, 29.71, 29.67, 29.64, 29.51, 29.38, 29.31, 25.77, 25.38, 22.71, 14.14. LRMS (ESI): $m / z=449.5[\mathrm{M}+\mathrm{Na}]^{+}$.

2.1.5. (9Z)-N-[2-(indol-3-yl)ethyl]octadec-9-enamide (3e)

Amide $\mathbf{3 e}$ was synthesised according to the procedure described by us [14] by reacting tryptamine 1 with oleic acid $\mathbf{2 e}$ in the presence of BOP. Compound $\mathbf{3 e}$ was obtained as a colourless solid ($1.97 \mathrm{~g}, 89 \%$), mp 69-71 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR: $\delta 8.38\left(\mathrm{~s}, 1 \mathrm{H}-\mathrm{N} 1^{\prime}\right), 7.60\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}-6^{\prime}\right)$, 7.37 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-3^{\prime}\right), 7.19\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-5^{\prime}\right), 7.11(\mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-4^{\prime}\right), 7.00\left(\mathrm{~s}, 1 \mathrm{H}-2^{\prime}\right), 5.84(\mathrm{~s}, 1 \mathrm{H}-\mathrm{NH}), 5.34(\mathrm{~m}$, $2 \mathrm{H}-9,10), 3.60\left(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}-1^{\prime \prime}\right), 2.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}-$ $2^{\prime \prime}$), 2.11 (t, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}-2\right), 2.00(\mathrm{~m}, 4 \mathrm{H}-8,11), 1.57$ (m, $2 \mathrm{H}-3$), 1.26 (m, 22H-4-7,12-17), 0.88 (t, $J=7.5,3 \mathrm{H}-18$).
${ }^{13}$ C NMR: $\delta 173.62,136.44,130.02,129.77,127.33$, $122.14,122.10,119.42,118.66,111.79,111.35,39.89,36.67$, 31.92, 29.78, 29.73, 29.63, 29.54, 29.34, 29.27, 29.25, 29.15, 27.24, 27.19, 25.81, 25.28, 22.69, 14.14.

2.1.6. (5Z,8Z,11Z,14Z)-N-[2-(indol-3-yl)ethyl]icosa-5,8,11,14-tetraenamide (3f)

Amide $\mathbf{3 f}$ was synthesised according to the procedure described by us [14] by reacting tryptamine $\mathbf{1}$ with arachidonic acid $\mathbf{2 e}$ in the presence of BOP. Compound $\mathbf{3 f}(0.21 \mathrm{~g}, 86 \%)$ was obtained as a yellow oil.
${ }^{1} \mathrm{H}$ NMR: $\delta 8.26\left(\mathrm{~s}, 1 \mathrm{H}-\mathrm{N} 1^{\prime}\right), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-$ $\left.6^{\prime}\right), 7.38\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-3^{\prime}\right), 7.20\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-5^{\prime}\right)$, $7.12\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-4^{\prime}\right), 7.02\left(\mathrm{~s}, 1 \mathrm{H}-2^{\prime}\right), 5.75(\mathrm{~s}, 1 \mathrm{H}-\mathrm{NH})$, $5.30-5.42$ ($\mathrm{m}, 8 \mathrm{H}-5,6,8,9,11,12,14,15$), $3.60(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}-1^{\prime \prime}\right), 2.97$ (t, $\left.J=6.5 \mathrm{~Hz}, 2 \mathrm{H}-2^{\prime \prime}\right), 2.81$ (m, 6H-7,10,13), $2.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}-2), 2.05(\mathrm{~m}, 4 \mathrm{H}-4,16), 1.67(\mathrm{~m}, 2 \mathrm{H}-$ 3), $1.25-1.38(\mathrm{~m}, 6 \mathrm{H}-17,18,19), 0.88(\mathrm{t}, J=7.0,3 \mathrm{H}-18) .{ }^{13} \mathrm{C}$ NMR: $\delta 173.18,136.41,130.554,129.07,128.74,128.62$, 128.23, 128.17, 127.75, 127.51, 127.32, 122.19, 122.06, 119.47, 118.67, 112.87, 111.31, 39.84, 36.03, 31.51, 29.32, $27.22,26.65,25.64,25.63,25.62,25.56,25.29,22.57,14.08$. HR MS (ESI): $m / z=469.3190[\mathrm{M}+\mathrm{Na}]^{+}$; calcd. mass for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{ONa} 469.3195$.

2.2. Synthesis of 1 -substituted-3,4-dihydro- β-carbolines (4a-f)

Imines $\mathbf{4 a}$ and $\mathbf{4 b}$ were synthesised as described in the literature [15] by reacting tryptamides with $\mathrm{P}_{2} \mathrm{O}_{5}$ in boiling xylene. Compound $\mathbf{4 a}$ was obtained in a form of colourless crystals (92%), mp $176-179{ }^{\circ} \mathrm{C}$ (Ref. [16] mp 175-178 ${ }^{\circ} \mathrm{C}$) and $\mathbf{4 b}$ as yellow crystals (90%), mp $165-167^{\circ} \mathrm{C}$ (Ref. [17] $\mathrm{mp} 162-165^{\circ} \mathrm{C}$). The spectroscopic data were in agreement with those reported in the literature [18] - for imine $\mathbf{4 a}$, and [12] - for imine 4b.

Typical procedure for the synthesis of imine $\mathbf{4 c}: \mathrm{POCl}_{3}$ $(2.19 \mathrm{~mL}, 23.3 \mathrm{mmol})$ was added to a solution of amide $4 \mathbf{c}(1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The solution was heated at reflux for $\mathbf{4 h}$ and then cooled to room temperature. The volatiles were evaporated under reduced pressure and the residue was dissolved in 30 mL of CHCl_{3}, made alkaline with $10 \% \mathrm{NaOH}$, extracted with CHCl_{3}, dried over MgSO_{4}. The residue after evaporation of the solvent was chromatographed on a silica column with $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(95: 5)$ to give compound $(\mathbf{4 c})$ as a yellow oil $(0.49 \mathrm{~g}, 52 \%)$. The imines $\mathbf{4 d}-\mathbf{f}$ were obtained accordingly.
${ }^{1} \mathrm{H}$ NMR: $\delta 12.16$ (s, 1H-N9), 7.68 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}-$ 5), $7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}-8), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-6)$, $7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-7), 3.91(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}-3), 3.28$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}-4), 3.11\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}-1^{\prime}\right), 1.82(\mathrm{q}$, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}-2^{\prime}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H}-3^{\prime}\right), 1.08-1.19\left(\mathrm{~m}, 8 \mathrm{H}-4^{\prime}-7^{\prime}\right)$, 0.77 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}-8^{\prime}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 169.06,141.00$, $128.03,126.17,124.41,122.35,121.53,120.90,113.94$, $43.12,33.45,31.80,29.41,29.34,29.13,28.47,22.58,19.52$, 14.04.
2.3. Synthesis of $(1 S)$ - and
(1R)-1-substituted-1,2,3,4-tetrahdro- β-carbolines ($\boldsymbol{6 a - f}$)

2.3.1. (1S)-1-methyl-2,3,4,9-tetrahydro-1H- β-carboline

Representative procedure for the enantioselective hydrogenation of imine 4a-f: the catalyst $(R, R)-5$ was pre-formed from $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]_{2}(6 \mathrm{mg}, 24 \mu \mathrm{~mol})$ and $(1 R, 2 R)-1,2-$ diphenyl- N-(p-toluoylsulfonyl)ethylenediamine $\quad(7.3 \mathrm{mg}$, $20 \mu \mathrm{~mol})$ in $4 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$.

To a solution of imine $\mathbf{4 a}(0.84 \mathrm{~g}, 4.58 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ (5 mL) a 5:2 formic acid/triethylamine azeotropic mixture $(2.5 \mathrm{~mL})$ was introduced, and then the pre-formed catalyst $(R, R)-5$ was added. The mixture was stirred at room temperature for 12 h and afforded, after column chromatography with $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{3 \mathrm{aq}}$ (95:5:1), (1 S)-6a (0.71 g , 84%) as colourless crystals $\mathrm{mp} 179-181^{\circ} \mathrm{C}$ (Ref. [15] $\mathrm{mp} 176-177^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}^{23}=-56.8$ (c 2.0, EtOH) (Ref. [19] $\left.[\alpha]_{\mathrm{D}}^{23}=-52.0(c 2.0, \mathrm{EtOH})\right)$. The spectroscopic data were in agreement with those reported in the literature [20].

Melting point of $(1 S)$ - $\mathbf{6 a}$ and $(1 R)$ - $\mathbf{6 a}$ were identical. For compound $(1 R)-6 \mathbf{a}[\alpha]_{\mathrm{D}}^{23}=+55.6(c 2.0, \mathrm{EtOH})$.

2.3.2. (1S)- and (1R)-1-propyl-2,3,4,9-tetrahydro-1H- β carboline ($\mathbf{6 b}$)

$(1 S)-6 \mathbf{b}$: a yellow oil (79%), $[\alpha]_{\mathrm{D}}^{23}=-73.5(c 1.0, \mathrm{EtOH})$ (Ref. $\left.[21][\alpha]_{\mathrm{D}}^{23}=-30.0\right) ;(1 R)-\mathbf{6 b}:(88 \%),[\alpha]_{\mathrm{D}}^{23}=+72.7$ (c $1.0, \mathrm{EtOH}$).
${ }^{1} \mathrm{H}$ NMR: $\delta 7.87$ (s, 1H-N9), 7.49 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}-$ 5), $7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-8), 7.15-7.07$ (m, 2H-6,7), 4.05 (m, 1H-1), 3.35 (m, 1H-3), 3.02 (m, 1H-3), 2.73 (m, 2H-4), $1.86-1.79\left(\mathrm{~m}, 2 \mathrm{H}-1^{\prime}\right), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}-\mathrm{N} 2), 1.59-1.45(\mathrm{~m}$, $\left.2 \mathrm{H}-2^{\prime}\right), 0.98\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}-3^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR: $\delta 136.37,135.59,127.54,121.42,119.31$, 118.03, 110.66, 108.90, 52.43, 42.60, 37.23, 22.71, 19.12, 14.26. LR MS (ESI): $m / z=215.2[\mathrm{M}+\mathrm{H}]^{+}$.
2.3.3. (1S)- and (1R)-1-octyl-2,3,4,9-tetrahydro-1H- β carboline ($\mathbf{6 c}$)
(1S)-6c: a yellow oil (81%), $[\alpha]_{\mathrm{D}}^{23}=-54.0(c 1.0, \mathrm{EtOH})$; $(1 R)-\mathbf{6 c}:(85 \%),[\alpha]_{\mathrm{D}}^{23}=+54.7$ (c 1.0, EtOH).
${ }^{1} \mathrm{H}$ NMR: $\delta 7.79$ (s, 1H-N9), $7.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-$ 5), $7.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-8), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}-6,7), 4.05$ $(\mathrm{m}, 1 \mathrm{H}-1), 3.36(\mathrm{~m}, 1 \mathrm{H}-3), 3.02(\mathrm{~m}, 1 \mathrm{H}-3), 2.75(\mathrm{~m}, 2 \mathrm{H}-4)$, $1.91-1.82\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{N} 2,1^{\prime}\right), 1.69-1.62\left(\mathrm{~m}, 1 \mathrm{H}-1^{\prime}\right), 1.59-1.42$ (m, 2H-2'), 1.41-1.27(m, 10H-3'-7'), $0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}-$ $\left.8^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 136.32,135.58,127.55,121.47,119.36$, $118.05,110.67,108.95,52.72,42.64,35.09,31.87,29.89$, 29.54, 29.29, 25.93, 22.69, 22.67, 14.12.

2.3.4. (1S)- and (1R)-1-heptadecyl-2,3,4,9-tetrahydro$1 H$ - β-carboline ($6 \boldsymbol{d}$)

(1S)-6d: a yellow solid (77\%), mp $87-89^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=$ $-34.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;(1 R)-\mathbf{6 d}:(79 \%), \mathrm{mp} 86-88^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=$ +33.7 ($с 1.0, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR: $\delta 7.78$ (s, 1H-N9), 7.49 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-$ 5), $7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-8), 7.15-7.07$ (m, 2H-6,7), 4.08 (m, 1H-1), 3.36 (m, 1H-3), $3.03(\mathrm{~m}, 1 \mathrm{H}-3), 2.75(\mathrm{~m}, 2 \mathrm{H}-4)$, 2.12-1.83 (m, 2H-N2, 1'), 1.72-1.64 (m, 1H-1'), 1.59-1.42 (m, 2H-2'), 1.39-1.22 (m, 28H-3'-16'), $0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 136.09,135.60,127.52,121.53,119.40$, 118.06, 110.69, 108.92, 52.70, 42.55, 35.02, 31.94, 29.89, 29.71, 29.67, 29.63, 29.58, 29.38, 25.93, 22.71, 22.56, 14.14 . LR MS (ESI): $m / z=411.4[\mathrm{M}+\mathrm{H}]^{+}$.

2.3.5. (1S)- and (1R)-1-[($\left.8^{\prime} Z\right)$-heptadec- 8^{\prime}-enyl $]-2,3$, 4,9-tetrahydro- $1 H$ - β-carboline ($6 \boldsymbol{6}$)

(1S)-6e: a yellow oil (77\%), $[\alpha]_{\mathrm{D}}^{23}=-26.5$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$; $(1 R)-6 \mathrm{e}:(84 \%),[\alpha]_{\mathrm{D}}^{23}=+25.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR: $\delta 7.87$ (s, 1H-N9), 7.48 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-5$), 7.32 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-8$), 7.16-7.08 (m, 2H-6,7), 5.39-5.30 (narrow m, 2H-8', 9^{\prime}), 4.09 (m, 1H-1), 3.36 (m, 1H-3), 3.05 (m, 1H-3), 2.76 (m, 2H-4), 2.03-1.92 (m, 5H-N2, $7^{\prime}, 10^{\prime}$), $1.91-1.82\left(\mathrm{~m}, 1 \mathrm{H}-1^{\prime}\right), 1.74-1.66\left(\mathrm{~m}, 1 \mathrm{H}-1^{\prime}\right), 1.59-1.41(\mathrm{~m}$, $\left.2 \mathrm{H}-2^{\prime}\right), 1.42-1.21\left(\mathrm{~m}, 20 \mathrm{H}-6^{\prime}, 11^{\prime}-16^{\prime}\right), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, H-17').
${ }^{13}$ C NMR: δ 135.70, 135.62, 130.01, 129.78, 127.41, $121.59,119.42,118.08,110.75,108.76,52.67,42.37,34.87$, 31.92, 29.84, 29.78, 29.67, 29.54, 29.48, 29.33, 29.28, 29.21, 27.24, 27.20, 25.91, 22.70, 22.30, 14.14. LR MS (ESI): $m / z=409.4[\mathrm{M}+\mathrm{H}]^{+}$.

2.3.6. (1R)-1-[(4'Z, $\left.7^{\prime} Z, 10^{\prime} Z, 13^{\prime} Z\right)$-nonadeca-

 $4^{\prime}, 7^{\prime}, 10^{\prime}, 13^{\prime}$-tetraenyl]-2,3,4,9-tetrahydro-1H- β carboline ($6 \boldsymbol{f}$)A yellow oil (70%), $[\alpha]_{\mathrm{D}}^{23}=+10.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR: $\delta 7.89$ (s, 1H-N9), 7.48 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-5$), 7.32 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}-8), 7.17-7.08$ (m, 2H-6,7), 5.41-5.32 (m, 8H-4 $\left.{ }^{\prime}, 5^{\prime}, 7^{\prime}, 8^{\prime} 10^{\prime}, 11^{\prime}, 13^{\prime}, 14^{\prime}\right), 4.17$ (s, 1H-1), 3.38 (m, $1 \mathrm{H}-3), 3.09$ (m, 1H-3), 2.81 (m, 8H-4, $6^{\prime}, 9^{\prime}, 12^{\prime}$), 2.19-2.02 (m, 5H-N2, $3^{\prime}, 15^{\prime}$), 1.94-1.86 (m, 1H-1'), 1.80-1.72 (m, 1H$\left.1^{\prime}\right), 1.70-1.52\left(\mathrm{~m}, 2 \mathrm{H}-2^{\prime}\right), 1.38-1.25\left(\mathrm{~m}, 6 \mathrm{H}-6^{\prime}, 16^{\prime}-17^{\prime}, 18^{\prime}\right)$, 0.88 (t, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-19^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: δ 136.06, $135.75,130.57,129.49,128.63,128.56,128.25,128.23$, $127.86,127.53,127.27,121.81,119.55,118.16,110.83$, $108.67,52.54,42.03,34.05,31.52,29.33,27.23,27.13$, 25.73, 25.71, 25.67, 25.66, 22.59, 21.84, 14.09. HR MS (ESI): $m / z=431.3436[\mathrm{M}+\mathrm{H}]^{+}$; calcd. mass for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{2}$ 431.3426.

2.4. Synthesis of Mosher acid derivatives (7a-e)

2.4.1. (1S)-1-methyl-2-[(2" $R)-3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}-$
trifluoro-2"-methoxy-2" -phenylpropanoyl]-3,4,9-trihydro-1H- β-carboline $\left[\left(1 S, 2^{\prime \prime} R\right)-7 a\right]$

Representative procedure for the synthesis of Mosher acid amides. The Mosher acid chloride was prepared without isolation: R-(+)- α-methoxy- α-trifluoromethylphenylacetic acid $(0.12 \mathrm{~g}, 0.53 \mathrm{mmol})$ with $\mathrm{SOCl}_{2}(0.058 \mathrm{~mL}, 0.79 \mathrm{mmol})$ in toluene (12 mL) was heated at reflux for 3 h . To a stirred solution of amine $(1 S)-\mathbf{6 a}(78 \mathrm{mg}, 0.42 \mathrm{mmol})$ and triethylamine ($0.14 \mathrm{~mL}, 1.01 \mathrm{mmol}$) in hexane (15 mL) a pre-formed Mosher acid chloride ($0.13 \mathrm{~g}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise and heated at reflux for 1 h . The reaction mixture was then treated with saturated NaHCO_{3} solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by chromatography with $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(98: 2)$ to give $\left(1 S, 2^{\prime \prime} R\right)-7 \mathbf{a}(140 \mathrm{mg}, 83 \%)$ as a colourless solid, mp 307-309 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=+162.8$ (c 1.0, CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR: $\delta 8.93$ (s, 1H-N9), 7.55-7.24 (m, 7H$5,8, \mathrm{Ph}), 7.11-6.99(\mathrm{~m}, 2 \mathrm{H}-6,7), 6.1(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-$ 1), $4.33\left(\mathrm{dd}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 3.82(\mathrm{~d}$, $\left.J=1.0 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 3.30(\mathrm{~m}, 1 \mathrm{H}-4), 2.17\left(\mathrm{dd}, J_{1}=3.0 \mathrm{~Hz}\right.$, $\left.J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 1.67\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}-1^{\prime}\right), 1.45(\mathrm{~m}, 1 \mathrm{H}-$ 4). ${ }^{13} \mathrm{C}$ NMR: $\delta 164.89,136.22,134.13,133.96,129.44$, $128.38,126.76,126.28,123.94\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.88$, $119.35,117.91,111.20,106.79,84.88\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right)$, 55.50, 46.32, 38.87, 19.90, 19.41. LR MS (ESI): $m / z=425.2$ $[\mathrm{M}+\mathrm{Na}]^{+}$.
2.4.2. (1R)-1-methyl-2-[($\left.2^{\prime \prime} R\right)-3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro- $2^{\prime \prime}$ -methoxy-2"-phenylpropanoyl]-3,4,9-trihydro- $1 \mathrm{H}-\beta$ carboline $\left[\left(1 R, 2^{\prime \prime} R\right)-7 a\right]$

A colourless solid (77\%), mp 136-138 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=-54.0$ (c $1.0, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR: $\delta 8.23$ (s, 1H-N9), 7.62-7.45 (m, 7H-5,8, $\mathrm{Ph}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}-6,7), 5.96(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-1)$, $4.10\left(\mathrm{dd}, J_{1}=5.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 3.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $\left.3 \mathrm{H}-\mathrm{OCH}_{3}\right), 2.91-2.73(\mathrm{~m}, 2 \mathrm{H}-4), 2.65\left(\mathrm{dd}, J_{1}=3.0 \mathrm{~Hz}\right.$, $\left.J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 1.65\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}-1^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 164.99,136.25,134.59,134.15,129.50,128.61,126.43$, $126.37,123.77\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.98,119.50,117.93$, $111.28,106.47,85.04\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right), 56.44,46.85$, 39.97, 21.68, 18.31. LR MS (ESI): $m / z=425.2[\mathrm{M}+\mathrm{Na}]^{+}$.
2.4.3. (1S)-1-propyl-2-[($\left.2^{\prime \prime} R\right)-3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro- $2^{\prime \prime}$ -methoxy-2" -phenylpropanoyl]-3,4,9-trihydro-1H- β carboline $\left[\left(1 S, 2^{\prime \prime} R\right)-7 b\right]$

A colourless solid $(74 \%), \mathrm{mp} 198-201^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=$ $+127.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR: $\delta 8.26$ (s, 1H-N9), 7.53-7.23 (m, 7H-5,8, Ph), $7.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-7), 5.95$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-1), 4.43\left(\mathrm{dd}, J_{1}=5.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}-\right.$ $3), 3.83\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 3.32(\mathrm{~m}, 1 \mathrm{H}-4), 2.10$ $\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 1.98-1.87\left(\mathrm{~m}, 2 \mathrm{H}-1^{\prime}\right)$, $1.63-1.57\left(\mathrm{~m}, 2 \mathrm{H}-2^{\prime}\right), 1.28(\mathrm{~m}, 1 \mathrm{H}-4), 1.01(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}-3^{\prime}$).
${ }^{13}$ C NMR: $\delta 164.99,135.95,133.95,133.45,129.38$, 128.38, 126.71, 126.39, $123.83\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.88$, $119.39,117.97,110.95,107.29,85.91\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right)$, $55.69,49.89,39.08,37.18,19.98,19.75,14.29$. LR MS (ESI): $m / z=453.2[\mathrm{M}+\mathrm{Na}]^{+}$.
2.4.4. (1R)-1-propyl-2-[($\left.2^{\prime \prime} R\right)-3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro-2"-methoxy-2" -phenylpropanoyl]-3,4,9-trihydro-1H- β carboline $\left[\left(1 R, 2^{\prime \prime} R\right)-7 b\right]$

A colourless solid (68%), mp 239-241 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=-12.0$ (c $1.0, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR: $\delta 8.29$ (s, 1H-N9), 7.64-7.34 (m, 7H-5,8, Ph), $7.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-7), 5.82$ (t, J=7.0 Hz, 1H-1), $4.08\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}-\right.$ 3), $3.67\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 2.94-2.80(\mathrm{~m}, 2 \mathrm{H}-4)$, $2.64-2.61\left(\mathrm{dd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 1.96-1.87(\mathrm{~m}$, $\left.2 \mathrm{H}-1^{\prime}\right), 1.62-1.57\left(\mathrm{~m}, 2 \mathrm{H}-2^{\prime}\right), 1.02\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}-3^{\prime}\right) .{ }^{13} \mathrm{C}$

NMR: $\delta 165.12,136.05,134.36,133.96,129.44,128.49$, $126.58,126.46,123.69\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 122.02,119.58$, 117.97, 111.12, 106.88, $85.08\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right), 56.45$, 50.29, 40.31, 36.35, 21.51, 19.68, 14.32. LR MS (ESI): $m / z=453.2[\mathrm{M}+\mathrm{Na}]^{+}$.
2.4.5. (1S)-1-octyl-2-[($\left.2^{\prime \prime} R\right)-3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro-2" -methoxy-2"-phenylpropanoyl]-3,4,9-trihydro-1H- β carboline $\left[\left(1 S, 2^{\prime \prime} R\right)-7 c\right.$]

A colourless solid $(67 \%), \mathrm{mp} 197-199^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=$ +105.4 (c 1.0, CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR: $\delta 8.23$ (s, 1H-N9), 7.53-7.23 (m, 7H-5,8, Ph), $7.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-7), 5.95(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-1), 4.38\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right)$, $3.83\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 3.35-3.29$ (m, $\left.1 \mathrm{H}-4\right), 2.11$ (dd, $\left.J_{1}=3.5 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 2.02-1.84\left(\mathrm{~m}, 2 \mathrm{H}-1^{\prime}\right)$, $1.61-1.54\left(\mathrm{~m}, 3 \mathrm{H}-4,2^{\prime}\right), 1.28\left(\mathrm{~m}, 10 \mathrm{H}-3^{\prime}-7^{\prime}\right), 0.88(\mathrm{t}, J=7.0$, $\left.3 \mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 164.94,135.93,133.95,133.49,129.38$, $128.39,126.71,126.38,123.82\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.87$, $119.38,117.97,110.96,107.25,85.00\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right)$, $55.67,50.03,39.13,35.07,31.83,29.86,29.49,29.24,26.63$, $22.65,19.78,14.10$. LR MS (ESI): $m / z=523.3[\mathrm{M}+\mathrm{Na}]^{+}$.
2.4.6. (1R)-1-octyl-2-[($\left.2^{\prime \prime} R\right)$ - $3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro- $2^{\prime \prime}$ -methoxy-2"-phenylpropanoyl]-3,4,9-trihydro- $1 \mathrm{H}-\beta$ carboline $\left[\left(1 R, 2^{\prime \prime} R\right)-7 c\right]$

Colourless crystals $(74 \%), \mathrm{mp} 187-188^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=$ $-3.2 c\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR: $\delta 8.38$ (s, 1H-N9), 7.64-7.35 (m, 7H-5,8, Ph), $7.16(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}-7), 5.83(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}-1), 4.09\left(\mathrm{dd}, J_{1}=5.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right)$, $3.68\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 2.94-2.80(\mathrm{~m}, 2 \mathrm{H}-4), 2.63$ (dd, $\left.J_{1}=3.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 2.01-1.84\left(\mathrm{~m}, 2 \mathrm{H}-1^{\prime}\right)$, 1.54-1.48 (m, 2H-2'), $1.29\left(\mathrm{~m}, 10 \mathrm{H}-3^{\prime}-7^{\prime}\right), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 165.09,136.04,134.35,134.00,129.42$, $128.45,126.60,126.46,123.69\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.97$, $119.53,117.93,111.13,106.78,85.07\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right)$, $56.46,50.41,40.32,34.32,31.89,29.99,29.61,29.30,26.31$, 22.67, 21.51, 14.12. LR MS (ESI): $m / z=523.3[\mathrm{M}+\mathrm{Na}]^{+}$.

Crystal structure: plate-like, colourless orthorhombic crystals from the $\mathrm{P} 2_{1} 2_{1} 2_{1}$ space group; $a=9.124(3)$, $b=11.974(3), \quad c=24.397(5) \AA, \quad V=2665.4(12) \AA^{3}, \quad Z=4$, $\rho=1.247 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1064, \mu(\mathrm{MoK} \alpha)=0.092 \mathrm{~mm}^{-1}$. A 20,580 reflections measured, 5994 of them independent ($R_{\mathrm{int}}=0.0446$). Final R and $w R$ of 0.0357 and 0.0772 , respectively, for 5075 observed independent reflections with $I>2 \sigma(I)$. The absolute structure was determined basing on the configuration of the Mosher acid residue and confirmed by the Flack parameter determination $[-0.4(5)]$ [22].
2.4.7. (1S)-1-heptadecyl-2-[(2" $R)-3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro- $2^{\prime \prime}$ -methoxy-2" -phenylpropanoyl]-3,4,9-trihydro-1H- β carboline $\left[\left(1 S, 2^{\prime \prime} R\right)-7 d\right]$

A colourless solid (58\%), mp 90-92 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=+73.2(c$ $1.0, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR: $\delta 8.12$ (s, 1H-N9), 7.53-7.23 (m, 7H-5,8, $\mathrm{Ph}), 7.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-7)$, $5.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-1), 4.37\left(\mathrm{dd}, J_{1}=5.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}-3), 3.82\left(\mathrm{~s}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}-4), 2.11$ (dd, $\left.J_{1}=3.5 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 2.01-1.83\left(\mathrm{~m}, 2 \mathrm{H}-1^{\prime}\right)$, $1.61-1.54\left(\mathrm{~m}, 3 \mathrm{H}-4,2^{\prime}\right), 1.25\left(\mathrm{~m}, 28 \mathrm{H}-3^{\prime}-16^{\prime}\right), 0.88(\mathrm{t}, J=7.0$, 3H-17').
${ }^{13}$ C NMR: $\delta 163.90,134.90,132.94,132.45,128.36$, $127.36,125.69,125.38,122.81\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 120.87$, $118.39,116.97,109.92,106.31,83.97\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right)$, $54.65,49.00,38.12,34.04,30.92,28.84,28.70,28.67,28.65$, $28.63,28.57,28.52,28.35,28.30,25.63,21.68,18.75,13.11$. LR MS (ESI): $m / z=649.5[\mathrm{M}+\mathrm{Na}]^{+}$.
2.4.8. (1R)-1-heptadecyl-2-[(2"R)-3", $3^{\prime \prime}, 3^{\prime \prime}$-trifluoro- $2^{\prime \prime}$ -methoxy-2"-phenylpropanoyl]-3,4,9-trihydro-1H- β carboline $\left[\left(1 R, 2^{\prime \prime} R\right)-7 d\right]$

A colourless solid $(64 \%), \mathrm{mp} 114-116^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=-3.2$ (c $1.0, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR: $\delta 8.42$ (s, 1H-N9), 7.64-7.35 (m, 7H-5,8, $\mathrm{Ph}), 7.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}-7)$, $5.85(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}-1), 4.09\left(\mathrm{dd}, J_{1}=5.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}-3), 3.68\left(\mathrm{~s}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 2.94-2.80(\mathrm{~m}, 2 \mathrm{H}-4), 2.63$ (dd, $\left.J_{1}=3.0 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 2.02-1.85(\mathrm{~m}, 2 \mathrm{H}-$ $\left.1^{\prime}\right), 1.56-1.48\left(\mathrm{~m}, 2 \mathrm{H}-2^{\prime}\right), 1.26\left(\mathrm{~m}, 28 \mathrm{H}-3^{\prime}-16^{\prime}\right), 0.88(\mathrm{t}$, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}-8^{\prime}\right)$.
${ }^{13}$ C NMR: δ 165.10, 136.04, 134.35, 134.01, 129.41, $128.45,126.60,126.45,123.69\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.95$, $119.51,117.91,111.13,106.73,85.07\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right)$, $56.46,50.39,40.31,34.32,31.92,30.00,29.71,29.66,29.65$, 29.59, 29.56, 29.36, 26.28, 22.69, 21.50, 14.12. LR MS (ESI): $m / z=649.5[\mathrm{M}+\mathrm{Na}]^{+}$.

2.4.9. (1S)-1-[($\left.8^{\prime} Z\right)$-heptadec- 8^{\prime}-enyl $]-2-\left[\left(2^{\prime \prime} R\right)-\right.$

$3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro-2"-methoxy-2" -phenylpropanoyl]-3,4,9-trihydro-1H- β-carboline [(1S, $\left.2^{\prime \prime} R\right)$-7e]

An oil (62%), $[\alpha]_{\mathrm{D}}^{23}=+65.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR: $\delta 8.17$ (s, 1H-N9), 7.53-7.23 (m, 7H-5,8, Ph), $7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-7), 5.91(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}-1), 5.36\left(\mathrm{~m}, 2 \mathrm{H}-8^{\prime}, 9^{\prime}\right), 4.37\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}\right.$, $\left.J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 3.34-3.27(\mathrm{~m}$, $1 \mathrm{H}-4), 2.10\left(\mathrm{dd}, J_{1}=3.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 2.01-1.83$ (m, 6H-1 $\left.1^{\prime}, 7^{\prime}, 10^{\prime}\right), 1.63-1.52\left(\mathrm{~m}, 3 \mathrm{H}-4,2^{\prime}\right), 1.26(\mathrm{~m}, 20 \mathrm{H}-$ $\left.3^{\prime}-6^{\prime}, 11^{\prime}-16^{\prime}\right), 0.88\left(\mathrm{t}, J=7.0,3 \mathrm{H}-17^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 164.92$, 135.92, 133.96, 133.44, 130.03, 129.67, 129.38, 128.37, 126.70, 126.39, $123.81\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.90,119.42$, $117.99,110.94,107.35,84.98\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right), 55.65$, $50.01,39.12,35.04,32.62,31.91,29.77,29.70,29.66,29.61$, 29.53, 29.49, 29.32, 29.20, 27.23,26.66, 22.69, 19.76, 14.12 . LR MS (ESI): $m / z=647.4[\mathrm{M}+\mathrm{Na}]^{+}$.

[^1]${ }^{1} \mathrm{H}$ NMR: $\delta 8.41$ ($\mathrm{s}, 1 \mathrm{H}-\mathrm{N} 9$), 7.64-7.35 (m, 7H-5,8, Ph), $7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-6), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}-7), 5.84(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}-1), 5.37\left(\mathrm{~m}, 2 \mathrm{H}-8^{\prime}, 9^{\prime}\right), 4.09\left(\mathrm{dd}, J_{1}=5.0 \mathrm{~Hz}\right.$, $\left.J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}-\mathrm{OCH}_{3}\right), 2.94-2.80(\mathrm{~m}, 2 \mathrm{H}-4)$, $2.63\left(\mathrm{dd}, J_{1}=3.0 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}-3\right), 2.03-1.86(\mathrm{~m}, 2 \mathrm{H}-$ $\left.1^{\prime}, 7^{\prime}, 10^{\prime}\right), 1.56-1.48\left(\mathrm{~m}, 2 \mathrm{H}-2^{\prime}\right), 1.26\left(\mathrm{~m}, 20 \mathrm{H}-3^{\prime}-6^{\prime}, 11^{\prime}-16^{\prime}\right)$, 0.87 ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}-8^{\prime}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 165.12,136.05$, $134.34,133.98,130.05,129.72,129.43,128.46,126.60$, $126.44,123.69\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289.5 \mathrm{~Hz}\right), 121.97,119.53,117.92$, $111.15,106.75,85.08\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=25.2 \mathrm{~Hz}\right), 56.48,50.42$, $40.33,34.24,32.63,31.90,29.98,29.78,29.67,29.59,29.54$, 29.34, 29.32, 29.20, 27.22, 26.31, 22.69, 21.51, 14.12. LR MS (ESI): $m / z=647.5[\mathrm{M}+\mathrm{Na}]^{+}$.

3. Results and discussion

The synthetic sequence started with the preparation of a series of fatty acid-substituted tryptamides 3a-f (Scheme 1).

The amide 3a was prepared from tryptamine $\mathbf{1}$ and acetic anhydride $\mathbf{2 a}$ in the presence of triethylamine, whereas amides $\mathbf{3 b} \mathbf{- d}$ were formed effectively from $\mathbf{1}$ and butyric, nonanoic or stearic acids $\mathbf{2 b} \mathbf{- d}$ in xylene at reflux temperature using a Dean-Stark apparatus. In the case of oleic (2e) and arachidonic ($\mathbf{2 f}$) acids, procedures involving acid chlorides or thermal amidation gave a substantial contamination of chlorinated and/or trans-isomerised by-products. Thus, in order to ensure the (stereo)chemical integrity of the amides, we applied the protocol successfully employed by us to the synthesis of sensitive dopamides [14]. Accordingly, amides $\mathbf{3 e}$ and $\mathbf{3 f}$ were prepared by a BOP-mediated coupling of tryptamine $\mathbf{1}$ with oleic ($\mathbf{2 e}$) or arachidonic ($\mathbf{2 f}$) acids in 89 and 86% yield, respectively. No traces of undesired products were detected. All amides 3a-f were then treated in a mild Bischler-Napieralski cyclization [15] yielding relatively unstable imines $\mathbf{4 a - f}$. They were then immediately subjected to the asymmetric transfer hydrogenation protocol under the conditions described by Noyori et al. [23], using both enantiomers of the chiral catalysts $(S, S)-5$ or $(R, R)-5$ [24] (Fig. 2). We observed that stereochemistry of the catalyst determined

[^2]
$(S, S)-5$

(R, R) -5

Fig. 2. Catalysts for the enantioselective transfer hydrogenation.
the stereochemistry of the amine. Therefore products with $(1 R)$ configuration were obtained when $(S, S)-5$ were used, whereas the ($1 S$) isomers were obtained under the influence $(R, R)-5$.

We found the above method superior over the procedure for the enantioselective $\mathrm{C}=\mathrm{N}$ reduction with sodium borohydride modified by chiral, non-racemic acids [25], which in our case gave only fair stereoselection (ee < 80%).

Much better stereochemical output could be gained by the use of a high pressure homogenous hydrogenation over chiral phosphine-rhodium complexes (the procedure according to Morimoto and Achiwa [26]) of imines $\mathbf{4 a - d}$ but this protocol proved inapplicable to the unsaturated imines $\mathbf{4 e}$ and $\mathbf{4 f}$.

On the other hand, the asymmetric transfer hydrogenation over $(S, S)-5$ or $(R, R)-5$ in the presence of triethylamineformic acid azeotrope proceeded smoothly affording the desired secondary amines $\mathbf{6 a - f}$ in excellent chemical yields (Table 1).

The amines were then transformed into their derivatives (Table 2) with (R)-Mosher acid chloride (Scheme 2) in order to determine the diastereomeric ratios in ${ }^{1} \mathrm{H}$ NMR spectra. In all cases we found that virtually no observable contamination with the second diastereomer was present.

The Mosher's amide of $(1 R)-7 \mathbf{c}$ was also obtained in a form of monocrystal suitable for X-ray crystallography (Fig. 3) that served for an unambiguous stereochemistry assignment [27].

Table 1
Asymmetric transfer hydrogenation of imines 4a-f

Imine	Catalyst 5	Amine	Yield \% ${ }^{\text {a }}$	ee $\%^{\text {b }}$	Config. ${ }^{\text {c }}$	$[a]_{\mathrm{D}}^{23}$
4a	S,S	(1R)-6a	84	>98	R	$+55.6{ }^{\text {d }}$
4a	R,R	(1S)-6a	82	>98	S	$-56.8{ }^{\text {d }}$
4b	S,S	(1R)-6b	79	>98	R	+72.7 ${ }^{\text {e }}$
4b	R,R	(1S)-6a	88	>98	S	$-73.5{ }^{\text {e }}$
4c	S, S	(1R)-6c	85	>98	R	$+54.7{ }^{\text {e }}$
4c	R,R	(1S)-6c	81	>98	S	$-54.0{ }^{\text {e }}$
4d	S, S	(1R)-6d	79	>98	R	+33.7 ${ }^{\text {f }}$
4d	R,R	(1S)-6d	77	>98	S	$-34.0{ }^{\text {f }}$
4e	S, S	(1R)-6e	84	>98	R	$+25.8{ }^{\text {f }}$
4e	R,R	(1S)-6e	77	>98	S	$-26.5{ }^{\text {f }}$
4 f	S, S	(1R)-6f	70	>98	R	$+10.2{ }^{\text {f }}$

${ }^{\text {a }}$ Isolated yield of pure compounds.
${ }^{\mathrm{b}}$ On the basis of ${ }^{1} \mathrm{H}$ NMR of Mosher's amides.
${ }^{c}$ By comparison of $[\alpha]_{\mathrm{D}}$ sign and X-ray analysis of 7c.
${ }^{\mathrm{d}} \mathrm{EtOH}, c=2$.
${ }^{\mathrm{e}} \mathrm{EtOH}, c=1.0$.
${ }^{\mathrm{f}} \mathrm{CHCl}_{3}, c=1.0$.

Table 2
The (R)-Mosher acid derivatives

Amide	${\text { Yield }(\%)^{\mathrm{a}}}$	de $(\%)^{\mathrm{b}}$	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	$[\alpha]_{\mathrm{D}}^{23}$
$(1 R) \mathbf{- 7 a}$	77	>98	$136-138$	-54.0
$(1 S)-\mathbf{7 a}$	83	>98	$307-309$	+162.8
$(1 R) \mathbf{- 7 b}$	68	>98	$239-241$	-12.0
$(1 S)-\mathbf{7 b}$	74	>98	$198-201$	+127.0
$(1 R)-\mathbf{7 c}$	74	>98	$187-188$	-3.2
$(1 S)-\mathbf{7 c}$	67	>98	$197-199$	+105.4
$(1 R)-\mathbf{7 d}$	64	>98	$114-116$	-3.2
$(1 S)-\mathbf{7 d}$	58	>98	$90-92$	+73.2
$(1 R)-\mathbf{7 e}$	58	>98	Oil	+4.9
$(1 S)-\mathbf{7 e}$	62	>98	Oil	+65.8

$\mathrm{CHCl}_{3}, c=1.0$.
${ }^{\text {a }}$ Isolated yield of pure compounds.
${ }^{b}$ On the basis of ${ }^{1} \mathrm{H}$ NMR.

Scheme 2. Synthesis of the Mosher's amides.

Fig. 3. The rentgenostructural analysis for compound (1R)-7c.
In the crystal, molecules related by a two-fold screw-axis symmetry in the a direction form infinite chains of molecules bonded with the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {carbonyl }}$ hydrogen bonds. Distinct hydrophobic and hydrophilic regions could be discerned in the structure.

4. Conclusions

In conclusion, an effective method for highly enantioselective preparation of 1 -substituted-1,2,3,4-tetrahydro- β carboline derivatives is described. The substituent at $\mathrm{C}-1$ position could also contain (Z)-double bond(s), which was retained within the whole procedure. Following our interest in biological activity of fatty acids derivatives of biogenic amines [7], the final compounds will be in vivo evaluated for their ability to cross the blood-brain barrier. This ability
is of importance in modern pharmacochemistry since there are evidences that dysfunction in brain catecholamine or indolamine pathways contribute to Parkinson's disease [28] together with affective disorders and schizophrenia [29].

References

[1] J.D. Philipson, M.F. Roberts, M.H. Zenk (Eds.), The Chemistry and Biology of Isoquinoline Alkaloids, Springer-Verlag, New York, 1985.
[2] J.D. Philipson, M.H. Zenk (Eds.), Indole and Biogenetically Related Alkaloids, Academic Press, London, 1980.
[3] A. Agarwal, P.P. Rearson, E.W. Taylor, H.B. Li, T. Dahlgren, M. Herslöf, Y. Yang, G. Lambert, D.L. Nelson, J.W. Regan, A.R. Martin, J. Med. Chem. 36 (1993) 4006.
[4] T. Nagatsu, Neurotoxicol. Teratol. 24 (2002) 565.
[5] D.L. Boger, S.J. Henriksen, B.F. Cravat, Curr. Pharm. Design 4 (1998) 303.
[6] I. Matuszewska, A. Leniewski, P. Roszkowski, Z. Czarnocki, Chem. Phys. Lipids, 2005, in press.
[7] M. Pokorski, Z. Matysiak, M. Marczak, R.P. Ostrowski, A. Kapuściński, I. Matuszewska, M. Kańska, Z. Czarnocki, Drug Develop. Res. 60 (2003) 217.
[8] G.M. Sheldrick, Acta Cryst. A 46 (1990) 467.
[9] G.M. Sheldrick, SHELXL-97 Program for X-ray Structure Refinement, University of Göttingen, Germany, 1997.
[10] K.M. Biswas, A.H. Jackson, M.M. Kobaisy, P.V. Shanon, J. Chem. Soc. Perkin Trans. 14 (1992) 461.
[11] S.C. Benson, L. Lee, L. Yang, J.K. Snyder, Tetrahedron 56 (2000) 1165.
[12] A. Cobas, E. Guitian, L. Castedo, J. Org. Chem. 57 (1992) 6765.
[13] G. Hahn, H.F. Gudjons, Ber. Dtsch. Chem. Ges. 71 (1938) 2175.
[14] Z. Czarnocki, M.P. Matuszewska, I. Matuszewska, Org. Prep. Proced. Int. 30 (1998) 699.
[15] H. Hulinska, P. Taufman, H. Frycowa, M. Protiva, Collect. Czech. Chem. Commun. 53 (1988) 373.
[16] S. Misztal, M. Cegła, Synthesis (1985) 1134.
[17] G. Kalaus, P. Györy, L. Szabo, C. Szantay, Acta Chim. Acad. Sci. Hung. 97 (1978) 429.
[18] D.H. Hua, S.N. Bharathi, J.A.K. Panangadan, A. Tsujimoto, J. Org. Chem. 56 (1991) 6998.
[19] H. Akimoto, K. Okamura, M. Yui, T. Shioiri, M. Kuramoto, Y. Kikugawa, S. Yamada, Chem. Pharm. Bull. 22 (1974) 2164.
[20] T. Kawate, M. Nakagawa, H. Yamazaki, M. Hirayama, T. Hino, Chem. Pharm. Bull. 41 (1993) 287.
[21] C. Gremmen, B. Willemse, M.J. Wanner, G.J. Koomen, Org. Lett. 2 (2000) 1955.
[22] H.D. Flack, Acta Cryst. A 39 (1983) 876.
[23] N. Uematsu, A. Fuji, S. Hashigichi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 118 (1996) 4916.
[24] L.F. Tietze, Y. Zhou, E. Töpken, Eur. J. Org. Chem. (2000) 2247.
[25] A.R. Hajipour, M. Hantehzadeh, J. Org. Chem. 64 (1999) 8475.
[26] T. Morimoto, K. Achiwa, Tetrahedron: Asymm. 6 (1995) 2661.
[27] The crystal structure of $(1 R)-7 \mathbf{c}$ has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 251663.
[28] C. Martinez, J.A. Agundez, G. Gervasini, R. Martin, J. Benitez, Pharmacogenetics 7 (2) (1997) 85.
[29] P. Moore, H.P. Landolt, E. Seifritz, C. Clark, T. Bhatti, J. Kelsoe, M. Rapaport, J.C. Gillin, Neurophysopharmacology 23 (2000) 601.

[^0]: * Corresponding author. Tel.: +48 2282202 11; fax: +48 228225996.

 E-mail address: czarnoz@chem.uw.edu.pl (Z. Czarnocki).

[^1]: 2.4.10. ($1 R$)-1-[($\left.8^{\prime} Z\right)$-heptadec- 8^{\prime}-enyl $]-2-\left[\left(2^{\prime \prime} R\right)\right.$ $3^{\prime \prime}, 3^{\prime \prime}, 3^{\prime \prime}$-trifluoro- $2^{\prime \prime}$-methoxy-2" -phenylpropanoyl]-3,4,9-trihydro-1H- β-carboline $\left[\left(1 R, 2^{\prime \prime} R\right)-7 e\right]$ An oil (58\%), $[\alpha]_{\mathrm{D}}^{23}=+4.9$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$.

[^2]: a: $R=-C_{3} ;$ b: $R=-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3} ; \mathbf{c}: \mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3} ; \mathrm{d}: \mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}$;
 e: $\mathrm{R}=(\mathrm{Z})-\left(\mathrm{CH}_{2}\right)_{7}(\mathrm{CH}=\mathrm{CH})\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3} ; \mathrm{f}: \mathrm{R}=(\mathrm{Z})-\left(\mathrm{CH}_{2}\right)_{3}\left[(\mathrm{CH}=\mathrm{CH}) \mathrm{CH}_{2}\right]_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

